A polymer that changes shape when heated can lift objects 5000 times its own weight, with potential applications in robotics.
Shape-memory polymers flip between their normal state, where molecules are flexible and disordered, and their deformed state, where the molecules bind after being stretched. Once in the stretched, deformed state, the polymer can be unstretched – resuming its “normal” state – by applying heat or light.
However, traditional shape-memory polymers don’t store significant amounts of energy while being stretched – meaning they don’t release much energy while unstretching, which limits their use in tasks that involve lifting or moving objects.
Zhenan Bao at Stanford University in California and her colleagues have now produced a shape-memory polymer that does store and release appreciable amounts of energy. Their version has a polypropylene glycol backbone to which they added 4-,4’-methylene bisphenylurea units.
When stretched, the polymer chains become physically aligned, and intra- and intermolecular bonds – called hydrogen bonds – form between the chains. These help the material maintain its highly stretched form. Then, when heated to 70°C, the hydrogen bonds break and the material can revert to its original unstretched form, releasing energy from the bonds in the process.

The polymer can be stretched to five times its initial length and store up to 17.9 joules of energy per gram in its extended form – six times that of most other shape-memory polymers. “It could be used to lift weight or to help to assist or provide additional push to someone who maybe is having difficulty walking,” says Bao.
To demonstrate its potential uses, the team turned the material into an artificial muscle between the upper and lower arm of a wooden mannequin. When the mannequin’s elbow joint was straightened, the polymer stretched . Then, by applying heat to the polymer, it contracted again, causing the mannequin’s elbow joint to bend.

An artificial muscle made of a stretched shape-memory polymer contracts upon heating, bending a mannequin’s armAdapted from ACS Central Science 2021, DOI: 10.1021/acscentsci.1c00829
“The reliable characteristics, and high strength of the material offer a new method for designing joints that are capable of lifting multiple times the material weight,” says Jonathan Aitken at the University of Sheffield, UK. However, Aitken questions the practicality of having to apply heat to the polymer.
Bao hopes to investigate the polymer’s properties to see if there is a molecular mechanism that can automatically elongate and shrink in response to smaller, easier to achieve changes in temperature.
Journal reference: ACS Central Science, DOI: 10.1021/acscentsci.1c00829

Leave a Reply

Your email address will not be published. Required fields are marked *

Previous post Wildfire pollution linked to at least 33,000 deaths worldwide
Next post A US military robot ship has fired a large missile for the first time